14 research outputs found

    The Malliavin derivative and application to pricing and hedging a European exchange option

    Get PDF
    Paper presented at Strathmore International Math Research Conference on July 23 - 27, 2012Paper presented at Strathmore International Mathematics Research Conference on July 23 - 27, 201

    On risk minimizing portfolios and martingale measures in Lévy markets

    Get PDF
    Our aim in this paper is to find a market portfolio and equivalent martingale measure (EMM) that minimizes risk as defined in [1], but in the jump diffusion market. We use optimal control methods for the determination of explicit solutions for our controls

    Subordinated affine structure models for commodity future prices

    Get PDF
    To date the existence of jumps in different sectors of the financial market is certain and the commodity market is no exception. While there are various models in literature on how to capture these jumps, we restrict ourselves to using subordinated Brownian motion by an α-stable process, α ∈ (0,1), as the source of randomness in the spot price model to determine commodity future prices, a concept which is not new either. However, the key feature in our pricing approach is the new simple technique derived from our novel theory for subordinated affine structure models. Different from existing filtering methods for models with latent variables, we show that the commodity future price under a one factor model with a subordinated random source driver, can be expressed in terms of the subordinator which can then be reduced to the latent regression models commonly used in population dynamics with their parameters easily estimated using the expectation maximisation method. In our case, the underlying joint probability distribution is a combination of the Gaussian and stable densities

    Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns

    Get PDF
    This paper explores the theory behind the rich and robust family of α-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, α including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter

    Bismut–Elworthy–Li formula for subordinated Brownian motion applied to hedging financial derivatives

    Get PDF
    he objective of the paper is to extend the results in Fournié, Lasry, Lions, Lebuchoux, and Touzi (1999), Cass and Fritz (2007) for continuous processes to jump processes based on the Bismut–Elworthy–Li (BEL) formula in Elworthy and Li (1994). We construct a jump process using a subordinated Brownian motion where the subordinator is an inverse 훼-stable process (Lt )t≥0 with (0, 1]. The results are derived using Malliavin integration by parts formula. We derive representation formulas for computing financial Greeks and show that in the event when Lt ≡ t, we retrieve the results in Fournié et al. (1999). The purpose is to by-pass the derivative of an (irregular) pay-off function in a jump-type market by introducing a weight term in form of an integral with respect to subordinated Brownian motion. Using MonteCarlo techniques, we estimate financial Greeks for a digital option and show that the BEL formula still performs better for a discontinuous pay-off in a jump asset model setting and that the finite-difference methods are better for continuous pay-offs in a similar setting. In summary, the motivation and contribution of this paper demonstrates that the Malliavin integration by parts representation formula holds for subordinated Brownian motion and, this representation is useful in developing simple and tractable hedging strategies (the Greeks) in jump-type derivatives market as opposed to more complex jump models

    Completion of markets by variation processes

    Get PDF
    Paper presented at Strathmore International Math Research Conference on July 23 - 27, 2012Paper presented at Strathmore International Mathematics Research Conference on July 23 - 27, 201

    Highly Efficient Shannon Wavelet-based Pricing of Power Options under the Double Exponential Jump Framework with Stochastic Jump Intensity and Volatility

    Get PDF
    We propose a highly efficient and accurate valuation method for exotic-style options based on the novel Shannon wavelet inverse Fourier technique (SWIFT). Specifically, we derive an efficient pricing methods for power options under a more realistic double exponential jump model with stochastic volatility and jump intensity. Inclusion of such innovations may accommodate for the various stylised facts observed in the prices of financial assets, and admits a more realistic pricing framework as a result. Following the derivation of our SWIFT pricing method for power options, we perform extensive numerical experiments to analyse both the method's accuracy and efficiency. In addition, we investigate the sensitivities in the resulting prices, as well as the inherent errors, to changes in the underlying market conditions. Our numerical results demonstrate that the SWIFT method is not only more efficient when benchmarked to its close competitors, such as the Fourier- cosine (COS) and the widely-acclaimed fast-Fourier transform (FFT) methods, but it is also robust across a range of different market conditions exhibiting exponential error convergence

    Efficient pricing of discrete arithmetic Asian options under mean reversion and jumps based on Fourier-cosine expansions

    Get PDF
    We propose an efficient pricing method for arithmetic Asian options based on Fourier-cosine expansions. In particular, we allow for mean reversion and jumps in the underlying price dynamics. There is an extensive body of empirical evidence in the current literature that points to the existence and prominence of such anomalies in the prices of certain asset classes, such as commodities. Our efficient pricing method is derived for the discretely monitored versions of the European-style arithmetic Asian options. The analytical solutions obtained from our Fourier-cosine expansions are compared to the benchmark fast Fourier transform based pricing for the examination of its accuracy and computational efficienc

    Risk minimizing portfolios and HJBI equations for stochastic differential games

    Get PDF
    In this paper we consider the problem to find a market portfolio that minimizes the convex risk measure of the terminal wealth in a jump diffusion market. We formulate the problem as a two player (zero-sum) stochastic differential game. To help us find a solution, we prove a theorem giving the HJBI conditions for a general zero-sum stochastic differential game in a jump diffusion setting. We then use the theorem to study particular risk minimization problems. Finally, we extend our approach to cover general stochastic differential games (not necessarily zero-sum), and we obtain similar HJBI equations for the Nash equilibria of such games
    corecore